Metabolomics and Machine Learning Identify Metabolic Differences and Potential Biomarkers for Frequent versus Infrequent Gout Flares

Abstract

To discover differential metabolites and pathways underlying infrequent gout flares (InGF) and frequent gout flares (FrGF) using metabolomics and establish a predictive model by machine learning (ML) algorithms. Serum samples from a discovery cohort with 163 InGF and 239 FrGF patients were analyzed by mass spectrometry-based untargeted metabolomics to profile differential metabolites and explore dysregulated metabolic pathways using pathway enrichment analysis and network propagation-based algorithms. ML algorithms were performed to establish a predictive model based on selected metabolites, which was further optimized by a quantitative targeted metabolomics method and validated in an independent validation cohort with 97 participants with InGF and 139 participants with FrGF. 439 differential metabolites between InGF and FrGF groups were identified. Top dysregulated pathways included carbohydrates, amino acids, bile acids, and nucleotide metabolism. Subnetworks with maximum disturbances in the global metabolic networks featured cross-talk between purine metabolism and caffeine metabolism, as well as interactions among pathways involving primary bile acid biosynthesis, taurine and hypotaurine metabolism, alanine, aspartate and glutamate metabolism, suggesting epigenetic modifications and gut microbiome in metabolic alterations underlying InGF and FrGF. Potential metabolite biomarkers were identified using ML-based multivariable selection and further validated by targeted metabolomics. Area under receiver operating characteristics curve for differentiating InGF and FrGF achieved 0.88 and 0.67 for the discovery and validation cohorts, respectively. Systematic metabolic alterations underlie InGF and FrGF, and distinct profiles are associated with differences in gout flare frequencies. Predictive modeling based on selected metabolites from metabolomics can differentiate InGF and FrGF.

Publication
Arthritis Rheumatol
Click the Cite button above to demo the feature to enable visitors to import publication metadata into their reference management software.
Create your slides in Markdown - click the Slides button to check out the example.

Add the publication’s full text or supplementary notes here. You can use rich formatting such as including code, math, and images.

Li Rui
Li Rui
Phd of Biology

My research interests include bioinformation, metabolomics, mass spectrometry